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ABSTRACT 
 
   The article deals with the predictions of time and space 
evolution of pollution dispersion during the early phase of a 
hypotetical radiation accident. The goal is to design a proper 
fast algorithm which could enable more precise online esti-
mation of radioactivity propagation on basis of recursive 
procedure of Bayesian filtering. Predicted trajectory of the 
plume of pollutants is refined online according to the values 
of observations incoming from terrain. The technique should 
be sufficiently robust to cope an expected lack of informa-
tion in the same beginning of the event. A certain modifica-
tion of the particle filter (PF) method is investigated here. Its 
robustness is illustrated on a real but atypical meteorological 
situation. Short time meteorological forecast entering the 
model is for this case in poor correspondence with the real 
time local meteorological measurements. Radiological meas-
urements are assumed to be coming periodically from the 
Czech Early Warning Network (EWN). The respective ra-
diological values in the real positions of EWN receptors are 
generated “artificially” drawing inspiration from the real lo-
cal meteorological measurements.  
 
INTRODUCTION 

   Ongoing efforts on improvement of safety requirements 
cover both implementation of inherent safety features of the 
new constructed facilities and substantial improvement of 
emergency preparedness and response. Tracking and predic-
tions of hazardous material spreading through the living en-
vironment provide decision-makers fundamental informa-
tion for effective emergency management. Modelers should 
be capable to generate relevant information even in the lack 
of some basic input information. Correct chain of simulated 
consequences requires as realistic as possible description of 
the accident evolution from the same beginning of the harm-
ful substances release. Just at the moment the accident sce-
nario is not known completely and large uncertainties are 
involved. The evolution of emergency situation is usually so 
far varied and complicated that specific ad hoc solutions 
have to be introduced. 
   In this paper we are studying an application of data assimi-
lation (DA) procedure insisting in optimum combination of 
prior knowledge with real observations incoming from ter-
rain. The observations bring simultaneously an indirect in-
formation related to the system state. Advanced statistical 

assimilation methods account for both model and meas-
urements error covariance structure. The problem of pol-
lution spreading in the atmosphere is described by non-
linear and generally non-Gaussian model. The attention is 
focused on Bayesian tracking of the toxic plume propaga-
tion over the terrain. It was shown (e.g. Doucet et al. 
2001, Doucet et al. 2008, Hoteit et al. 2008, Moradkhani 
2008) that except simple problems the Bayesian inference 
in such complex systems is not analytically tractable.  
   Consequently, the technique implemented here tries to 
solve a certain particular task of recursive Bayesian filter 
by Monte Carlo simulations.  The objective of tracking is 
to refine recursively model predictions  on basis of incom-
ing measurements. Tracking in Bayesian approach con-
cerns of recursive evaluation of the state posterior prob-
ability density function (pdf) evolution based on all avail-
able information. The article addresses the Bayesian 
tracking procedure from the same beginning of the com-
plicated toxic plume spreading under (possibly) incom-
plete scenario description.    

 
PROBLEM FORMULATION 

   We restrict our attention to the stochastic state-space 
models   

( )
( ) ttt

ttt

vxhy
wxbx

+=
+= −1                         (1) 

in discrete time steps t=1,…,T. Here, xt is N-dimensional 
vector unobserved internal quantities describing state of 
the model at time t, and yt is M-dimensional vector of 
measurements obtained during the time step < t-1;t >. 
Nonlinear vector functions b() and h() describe evolution 
of the state in time, and mapping of the state to measure-
ments, respectively. Disturbance (noise) vectors wt and vt 
are considered to be independent realizations of random 
variables with zero mean and known variances, Qt and Rt, 
respectively. 
   Formalization (1) is intuitively appealing for stationary 
additive disturbances (noises). However, it may be mis-
leading when e.g. variance of the disturbance is state-
dependent. Then, we consider a slightly more general ver-
sion of (1) 
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   Where p(xt|xt-1) denotes probability density function pdf of 
random variable xt given realization of xt-1. Model (1) arises 
as a special case (2) for choice p(xt|xt-1)=N(b(xt-1),Qt) and 
p(yt|xt)=N(h(xt),Rt). The recursion starts at t=0 for x0~p(x0) 
which is known as prior pdf. 
   Model (2) enforces too strong restrictions: (i) realization 
of state variable x at time t depends only on values of xt-1, 
and (ii) realization of the measurement yt depends only on 
current realization of the state xt. These assumptions may 
seem very restrictive, however, wide range of different 
models can be converted into the form (2) under appropriate 
choice of state variable xt. For example, when initial condi-
tions of the process or time-invariant parameters of the pdfs 
are not known, they are considered to be part of the state. In 
that case, xt is sometimes called the augmented state, how-
ever, we will not make such distinction. In this paper, xt de-
notes aggregation of all uncertainty in the model. Specific 
meaning of different parts of the state will be discussed 
later. 
    State-space formulation has been used in DA problem in 
the later stages of accident in post-emergency phases. Long 
term evolution of 137Cs deposited on terrain was predicted 
recursively (Hofman et al. 2008a) using Kalman filter tech-
nique, which is an optimal estimator for linear functions g() 
and h() and Gaussian pdfs in (2). But such linear model is 
insufficient for formulation of more complicated problems 
arising in the early phase of accident (Rojas-Palma 2005) 
and more general nonlinear dynamic model (2) is required. 
Bayesian approach to estimation of unknown quantities xt is 
based on recursive evaluation of posterior density p(xt|y1:t) 
using the Bayes rule: 
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   Here, y1:t = [y1,…,yt] and ∝  denotes equality up to multi-
plicative constant, see (Ducet et al. 2001) for details. Note 
that since xt aggregates all uncertainty in the model, poste-
rior density p(xt|y1:t) potentially provides estimates of un-
known parameters, unknown initial conditions,  or --- under 
appropriate parameterization --- even unknown variants of 
the model.  
 
PARTICLE FILTERING 

   Except for few special cases (such as the Kalman filter), 
integration (3) is intractable. Therefore, various approxima-
tion has been proposed. The particle filter (also known as 
sequential Monte Carlo) is based on approximation of the 
posterior density by a weighted empirical approximation 
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where , i=1,…,n are samples of the random variable, 

i.e. the particles, and wi,t >0, 
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weights. Under this approximation, integration (3) is re-
duced to sampling from densities (in our case p(xt|xt-1) ), and 
recursive evaluation of particle weights wi,t. 
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   Key advantages of this approximation are easy evalua-
tion of an arbitrary moment, m(xt),  
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ability to handle arbitrary non-linear functions, and guar-
anteed convergence to the true posterior with growing 
number of particles n. The main disadvantage of the ap-
proach is its excessive computational cost. 
 
Adaptation of particle filtering scheme to the early 
phase of the plume propagation 

   Intuitively, the key state variable of the scenario is dis-
tribution of the pollutant in the atmosphere over the ter-
rain. We model this distribution via segmented Gaussian 
plume model (SGPM). This is a discrete model with one-
hour time step. Within each hour, given amount of a pol-
lutant is released and evolution of this quantity is simu-
lated taking into account all environmental effects (Pecha 
et al. 2007).  
   Real release dynamics is partitioned into a number of 
fictive one-hour segments with equivalent homogenous 
averaged release source strength. Synchronization with 
hourly forecast of meteorological conditions is per-
formed. Hourly segment of release is spread during the 
first hour as a “Gaussian droplet”. In the following hours 
of spreading according to available hourly meteorological 
forecast, the droplet is treated as “prolonged puff” and its 
dispersion and depletion during the movement is simu-
lated numerically by large number of elemental shifts.       
More detailed description of the procedure is described in 
(Pecha et al. 2008, Hofman et al. 2008). Each hourly seg-
ment g is consecutively modelled in its all hourly mete-
orological phases f. Output vector sT of values of interest 
at time T after the release start are superposed as:  
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   Each plume segment is uniquely described by the vector 
variable s g, f . Evolution of each such plume segment over 
the terrain is described by deterministic SGPM model 
mentioned above. Let rewrite symbolically sg,f to s(τ)t, 
where τ < t denotes time of the release of the plume seg-
ment. The SGPM model contains many input and model 
parameters (Pecha et al. 2005). Most of them are treated 
as single values that enter the model by their best estimate 
values. Important random parameters are selected on ba-
sis of sensitivity analysis of the SGPM model and consti-
tute random vector Θ. Independent random components 
of the vector Θ are labelled as Θm,m=1,..., Μ . Random sam-
ples i from pdf(Θm) are marked as θm

i . The components 
Θm selected for our scenario demonstrates Table 1. The 
aim of investigations calls for inclusion of as large as pos-
sible number of random parameters M. So far, because of 
computational practicability, the Table 1 presents the case 
with M truncated to 10.   
Variable s(τ)t is now parameterized by vector of parame-
ters Θt. This vector contains both time invariant parame-
ters, such are dispersion and dry deposition characteris-
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tics, and time-variant parameters, such are wind direction 
and wind velocity at time t.  
Under probabilistic formalization (2), the original SGPM 
model is interpreted as conditional density 
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 were considered to be known in the original 
formulation. In this text, we consider them to be unknown, 
hence we consider them to be part of the state. The state is 
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Distribution of the parameter vector p(Θt) is composed of 
independent pdfs of components Θm

t given in Table 1. 

Table 1: Components Θm of  random parameter vector Θ. 
              Count of components truncated to M=10.  

random  
parameter 

unit implementa-
tion  in code 

uncertainty 
bounds 

Θ1: radioactiv. 
release during 
hour 1 (f=1) 

[Bq.h-1] Q =  c1× Qb 
Qb in f=1 

LU; c1∈ 
<0.31;3.1> 

Θ2 : horizont.     
dispersion 

[m] σy  = c2 × σy
b

 Ntrunc ; c2∈ 
<0.89;1.12> 

Θ3 : dry depo 
velocity 

[m.s-1] vg =c3 × vgb
 LU ; c3∈ 

<0.91;1.10> 
Θ4 : Wind dir- 
ection f=1 

[rad] ϕ=ϕb + Δϕ,  
Δϕ=c4 × 2π/80 

U ; c4∈ 
<-12;+12> 

Θ5 : Wind dir- 
ection f=2 

[rad] ϕ=ϕb + Δϕ,  
Δϕ=c5 × 2π/80 

U ; c5∈ 
<-12;+12> 

Θ6 : Wind dir- 
ection f=3 

[rad] ϕ=ϕb + Δϕ,  
Δϕ=c6 × 2π/80 

U ; c6∈ 
<-12;+12> 

Θ7 : Wind 
speed f=1 

[m.s-1] V10= c7 ×Vb
10   

Vb
10 in f=1 

U ; c7∈ 
<0.5;3.0> 

Θ8 : Wind 
speed f=2 

[m.s-1] V10= c8 ×Vb
10  

Vb
10 in f=2  

U ; c8∈ 
<0.5;3.0> 

Θ9 : Wind 
speed f=3 

[m.s-1] V10= c9 ×Vb
10   

Vb
10 in f=3 

U ; c9∈ 
<0.5;3.0> 

Θ10: radioativ. 
release during 
hour 2 (f=2) 

[Bq.h-1] Q =  c10 × Qb 
Qb in f=2 

LU ; c10∈ 
<0.31;3.1> 
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Index b stands for “best estimate “ values; V10 – wind speed at 10 
m height;    f – phase (hour) after the release start;   
Type of distribution:  LU-loguniform; Ntrunc – Normal, truncated; 
                                 U – Uniform; 

   The measurements are modelled to have Gaussian distri-
bution: 
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The mean value is given by the sum of outputs from each 
plume segments and is approximated by bilinear approxima-
tion of the SGPM model predictions at the points of meas-
urements. For the experiment purposes the covariance ma-
trix Σt is constructed as 

)(diagpropmodel tMt yI λλ +=Σ             (11) 

with chosen constants λmodel and λprop. The first term mod-
els inaccuracies of the chosen Gaussian plume approxi-
mation, the second term models inaccuracies of the meas-
uring devices. This model is almost an arbitrary choice, 
that is used to show potential of the considered methodol-
ogy. Model of observation for practical purpose should be 
designed using exact characteristics of the application 
specific measurement devices.  
 
Implementation of PF algorithm 

   The following steps represent computational flow of 
recursive particle filtering applied here: 

1. Generate n realizations of parameter vector Θ0 
from densities listed in Table 1, { [θm

i ]m=1:M }i=1:n.  
Substitution of sets of realisations [θm

i ]m=1:M for 
each i into SGPM model (7) yields n correspond-
ing plumes (in the following text interpreted as 
“particle”). Initially, the same weight wi,0=1/n is 
assigned to each particle i. 

2. For each time t=1...T : 
a. Generate a set { [θm

i ]m=1:M }i=1:n of re-
alizations of Θt

  and for each plume 
(particle) compute one step prediction 
using the SGPM algorithm. The term 
“particle prolongation” is introduced. 

b. If measurements are available, recom-
pute the weights wi,t using (5). 

c. Compute posterior values of parameters 
of interest using (6) 

   Parameter vector Θ is expressed in Equation (8) as Θt. It 
means that count of the components treated as random 
within a certain time interval can vary, symbolically: 

Θt=1  ≈   Θ1   Θ2   Θ3   Θ4   Θ5   Θ6   Θ7   Θ8   Θ9   Θ10 ….         

Θt=2  ≈   Θ1   Θ2   Θ3   Θ4   Θ5   Θ6   Θ7   Θ8   Θ9   Θ10 …. 

Θt=3  ≈   Θ1   Θ2   Θ3   Θ4   Θ5   Θ6   Θ7   Θ8   Θ9   Θ10 …. 

   Let assume only the first three hours from the same be-
ginning of an accident. It corresponds to 10 parameters 
from Table 1. Bounded components stand for the relevant 
components that enter the sampling procedure in the par-
ticular time step. Alternative resampling schemes could be 
constructed (e.g. locally dependant land use characteristics 
when corresponding θ2 and θ3 could be assumed relevant 
in all time steps).   
 
Experimental results 

   The sampling scheme consists of generation of 5000 
particles corresponding to n=5000 realisations of random 
parameter vector Θ with 10 components Θm,m=1,..., 10 ac-
cording to uncertainty characteristics described in Table 
1. 
Evaluated values of the particle weights using λmodel  =  
104 and λprop  = cov × κ , with cov =1,…5 , are illustrated 
in Figure 1. The smallest values of variance (top) sharply 
selects only a few particles. With increasing variance, 
cov=2, …,5, uncertainty in the weight grows and more 
particles become non-negligible. Constant κ=1.0E+6 en-



sures link to measured magnitudes of radioactivity deposi-
tion.  
   Prior and posterior histograms of distributions of some pa-
rameters Θm from Table 1 are compared in Figure 2. Note 
that the posterior is sharply peaked for the three leftmost pa-
rameters while it is still widespread for the remaining pa-
rameters. But we should distinguish between parameter es-
timation for the concrete analysed situation and common av-
erage conditions. It should not be confused with parameter 
estimation which could give recommendation on parameter 
values commonly valid “in average”.   
 

 
Figure 1: Posterior weights wt for five choices cov, update 
using measurements incoming just after 2 hours from start.  
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Figure 2: Comparison of prior (top row) and posterior (bot-
tom row) histograms of distribution of selected parameters 
for cov=3.  

ILLUSTRATION OF PARTICLE FILTERING 
APPLIED IN THE EARLY STAGE OF A 
HYPOTHETICAL ACCIDENT  

   The robustness of the PF method outlined above is illus-
trated for case of a certain circumstance when in the same 
beginning of an accident the decision maker is not provided 
by fully clear and unambiguous information. Experience 
from former radiation accidents pointed out the side effects 
leading to an information shocks with possible temporal pa-
ralysis of communication lines. In this sense we have ad-

justed a hypothetical accident scenario. Real meteorologi-
cal situation from March 31, 2009 is taken into considera-
tion and the moment of hypothetical radioactivity release 
is set to 10.00 CET. Available real meteorological obser-
vations measured at the point of nuclear power plant 
(NPP) and short term meteorological forecast are some-
what inconsistent (see next Table 2). Following ex post 
analysis can give a retrospective view on such the atypi-
cal situations ( their occurrence rate is surprisingly not 
negligible). Due to a possible information shock men-
tioned above we shall assume conservatively a delay of 
two hours in recovery of radiation monitoring. Thus, the 
first measurements from terrain are coming just two hours 
after the release started.  A decision maker has a dilemma 
how to manage the prediction of harmful substances in 
the early stage.     

Available meteorological data 

   Let release of 131I radioactivity has started at 10.00 
CET, March 31, 2009, and lasted for 2 hours (Table 2).  

Table 2: Accidental release scenario of 131I , short-term 
meteorological forecast and real meteorological meas-
urements for “point” of NPP Temelin ( 49°10'48.53''N × 
14°22'30.93''E), time stamp 20090331-1000 CET. 

CET hour 10.00 11.00 12.00 13.00 
activity release 
of 131I  Bq/hour 

5.68 × 
e+14 

7.92 × 
e+14 

0 0 

wind direction1 
METLOC/ME
TOBS 

95.0 / 
54.0 

101.0 / 
69.0 

84.0 / 
65.0 

80.0 / 
80.0 

wind speed2 
METLOC/ME
TOBS 

2.0 / 
3.8 

2.1 / 
3.0 

1.9 / 
3.8 

2.2 / 
3.8 

Pasquill  atm. 
stability   

A A B B 

1) … at 10 m height, blowing “from” (degrees measured 
clockwise from North);    2) … at 10 m height  (m/s)  

   At moment of accident, the three kinds of meteorologi-
cal data were directly available: 

• Short term meteorological forecast generated twice a 
day, sequences up to 48 hours): 

- Label METLOC: Simple local forecast for the 
point of NPP (hourly sequences of wind direction 
and speed, category of atmospheric stability ac-
cording to Pasquill and precipitation), 

- Label METGRID: 3-D meteorological forecast in 
HIRLAM format for vicinity 160 × 160 kilometers 
around NPP. 

• Label METOBS: Observed values (real online mete-
orological measurements) incoming automatically 
from the point of NPP.  

   All the data are provided by the Czech meteorological 
service and are available online through ORACLE DB 
server.  
   Deterministic calculations according to SGPM model 
with METLOC meteorology for the first two hours of the 
release are illustrated in Figure 3. Superposition accord-
ing to Equation (7) was used for quantity of 131I deposi-



tion on the ground (first segment g=1, in phases f=1 and 2;  
second segment g=2, in phase f=2 ).   

 
Figure 3: Release scenario with meteodata METLOC - 
model predictions for “best estimate” values of model pa-
rameters, just 2 hours after the release start. 
131I deposition ranges (Bq.m-2): red: 5.00e+06 ÷ 1.30e+08 ; 
blue: 1.00e+06 ÷ 5.00e+06 ; yellow: 1.00e+05 ÷ 1.00e+06 ; 
 
Arrangement of the real positions of monitoring sensors  

   Early Warning Network (EWN) such a component of exist-
ing Radiation Monitoring Network (RMN) of the Czech Re-
public can be exploited for purposes of DA procedures. The 
main part of EWN is teledosimetric system (TDS) which for 
the NPP Temelin consists of two circles. The inner circle is 
positioned on the NPP-fence (see red circles in Figure 4 very 
close to NPP or in better discrimination in Figure 5) and con-
sists from 24 stations 2,5m above ground. The outer II. circle 
of measurement positions is drown in Figure 4 by red 
squares. The dose-rate data are transferred each 4 minutes 
and stored to the ORACLE DB server for online access. We 
are assuming all these receptors to be operable. An ability to 
measure selected magnitudes of deposition is a question of a 
future monitoring development. 
   For DA purposes we have 79 sensors located in vicinity of 
the nuclear facility. In this number we have included 3 mo-
bile stations located randomly in the middle distances. 
 
Artificial simulation of the missing real accidental radio-
logical data 
   We hope that all considerations remain only in hypotheti-
cal level and that the testing accidental radiological data will 
be always generated artificially. The technique is sometimes 
known as “twin experiment”.  
  A degree of belief to the initial near-range estimation using 
the SGPM model predictions with METLOC meteorological 
forecast (see Figure 3) will be low if we take into considera-
tions the similar calculations with METOBS real meteoro-
logical measurement (see Figure 4). We should respect the 
fact that if something happens, the shape of the correspond-
ing accidental trajectory close to the source should corre-
spond more likely with the Figure 4. 

 
Figure 4: Release scenario with meteodata METOBS - 
model predictions for “best estimate” values of model pa-
rameters, just 2 hours after the release start.      
131I deposition ranges (Bq.m-2): the same as in Figure 3. 
This figure also illustrates configuration of the inner part 
of the Czech EWN around NPP Temelin. 
 

 
Figure 5:   TDS on fence of NPP Temelin – 24 detectors 
 
Without more discussion, we use this subjective assump-
tion and generate the “artificial measurements” on the ba-
sis of METOBS real meteorological measurement in Fig-
ure 4. Though the model requirements so far exceed pos-
sibilities of monitoring in the Czech Republic, the coop-
eration between modelers and monitoring has growing im-
portance. The assimilation subsystem is developed in co-
operation with National Radiation Protection Institute 
(NRPI) which is administrator of RMN. 
 
THE RESULTS ACHIEVED FOR SEVERAL FIRST 
TIME STEPS  
   Finally, the following hypothetical data assimilation 
scenario defined for the early phase is accomplished:  

1. Predictions of 5000 particles (trajectories) for 
5000 realisations of the parameter vector Θ ac-
cording to the SGPM model. It covers time inter-
val 2 hours from the same beginning of accident, 
no measurements from terrain are not yet avail-
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able. Gridded meteorological forecast METGRID is 
always used. Prior probabilistic density function and 
its moments can be estimated. 

2. Let the first set of “artificial measurements” is incom-
ing just two hours after the release start. The values 
of “measurements” are generated according to Figure 
4 and the speculations introduced above.   

3. Update step of recursive procedure of PF estimates 
the posterior density function on basis of weighted 
empirical approximation given by Equation (4).  

4. Recursion continues in the next time interval per-
forming the transition step with resampled particles.  

   Approximation of posterior pdf is generated for 5 choices 
of covariances cov=1,….,5 according to Equation (11) 
(where λprop  =cov × κ ) and “measurements” from Figure 4. 
Expected mean values are calculated using common expres-
sion according to  Equation (6), specifically in the form: 
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Figure 6: Expectations of posterior pdf of the radioactivity 
deposition in dependency on covariance matrix (according 
to  Equation (11) ). A,B,C,D stand for cov=1,2,4,5. 

   An estimation of the expectations on basis of n generated  
particles xt

(i) , i=1:n  from posterior distribution is given by: 
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For n→∞ is achieved almost sure convergence of In(f) to 
I(f). 

 
Figure 7: Transition step for the next time interval. Prior 
pdf expectations for transition from hour 2 to hour 3. 
(case A → B for cov=1;  case C → D for cov=5). 

   The expectations of the quantity of activity deposition 
are given in Figure 6 for cases of cov=1,2,4,5. The outer 
contour corresponds to the level of 1.00 E+03 Bq.m-2. 
The results show tendency of the updated model to ap-
proach the measurements with low noises. The values are 
slightly spreading when inaccuracies of measurements 
grows (higher cov ). Covariances of the measurement er-
rors were selected rather low. At present new tests with 
increased covariance are running and tendency to lean to 
either model predictions or measurements are mapping.  
   Figure 7 demonstrates prolongation one time step for-
ward. Case A concerns cov=1 (also in Figure 6 A) expec-
tation from the posterior density just after 2 hours after 
the release start. Numerical approximation of the SGPM 
model is used for solution of the second part of Equation 
(3) which stands for transition equation for specific for-
mulation p(xf=3 | xf=2). Prediction from analysis (data up-
date) in the second hour (upper left A) to the third hour 
(upper right B) is done (prediction step). SGPM model 
prolongs the weighted particles within the hour 2 → 3. 
The similar shift for cov=5 stands for cases C → D. 
 
 
CONCLUSION  
   The article extends former investigations in DA meth-
odology (Hofman et al. 2007) where analysis of the input 
model parameters uncertainty and both model error and 
observation error covariance structure were examined. 
DA in early stage of accident requires much more sophis-
ticated access. From all possible techniques is adopted 
particle filter, which has one significant attribute. In PF 
the state ensemble trajectories are kept unchanged during 
the update step as for the forecast step and only their 
weights are updated. The particles remain unchanged af-
ter the correction (update) step and only receive the new 
weight ( according to Equation (5) ) reflecting closeness 
of the particle with respect the new observations.  
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   This evident PF feature has favourable impact on exploita-
tion of nonlinear prediction model SGPM in DA process in 
the early stage. SGPM model is in principle a trajectory 
model. The PF does not disrupt the trajectory information 
and it can be easily recursively forwarded.  
   The presented approach brings advantage of fast computa-
tion even for large number of realisations. One PF step of 
update and predictions with 5000 realisations is accom-
plished during about 15 minutes (common PC config.) and 
promises to support the decision making process in real 
time.  
   The adopted procedure seems to be robust and suitable to 
manage a certain discrepancies and scenario incompletness 
occurring from the same beginning of an accident. The au-
thors narrow down anxiously the range of some uncertain-
ties. For example the range of horizontal dispersion uncer-
tainty c2 and dry deposition c3 should be much higher (in 
correspondence with expert judgments). Afterwards, the 
traces (e.g. in Figure 6) would be more dispersed in horizon-
tal and longitudinal directions. Even the calculations have 
covered only the first time step and demonstrated code abil-
ity to predict in the second step, the full recursive PF appli-
cation seems to be easily feasible. 
   Still open remains a question of availability of measure-
ments, capability to provide specific quantities and configu-
ration and density of monitoring stations. The first negotia-
tion between modellers and specialists responsible for moni-
toring was launched (Kuca et al. 2008). The poor informa-
tion can result from rare measurements. On the other hand, 
requirements issued from DA experience should be reflected 
in the future development of radiation monitoring networks.    
   DA plays substantial role in realistic prediction of evolu-
tion of radiation situation during nuclear emergency. Reli-
able information arriving on time provides decision makers 
with necessary time on judgement and introduction of effi-
cient urgent countermeasures on population protection.  
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